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Abstract
Although some real networks exhibit self-similarity, there is no standard
definition of fractality in graphs. On the other hand, the small-world
phenomenon is one of the most important common properties of real
interconnection networks. In this paper we relate these two properties. In
order to do so, we focus on the family of Sierpinski networks. For the
Sierpinski gasket, the Sierpinski carpet and the Sierpinski tetra, we give the
basic properties and we calculate the box-counting dimension as a measure
of their fractality. We also define a deterministic family of graphs, which
we call small-world Sierpinski graphs. We show that our construction preserves
the structure of Sierpinski graphs, including its box-counting dimension,
while the small-world phenomenon arises. Thus, in this family of graphs,
fractality and small-world effect are simultaneously present.

PACS numbers: 02.60.Jh, 05.45.Df
Mathematics Subject Classification: 28A80, 90B10

1. Introduction

In the past ten years, complex networks have received the attention of researchers from a variety
of areas. The ability to capture, store and process huge amounts of information allows the
quantitative analysis of large, apparently random and unpredictable systems. Parallel research
developments have shown that biological, social and economic networks, communication
networks, the Internet and the www, as well as other artificial systems such as software
architecture networks, are far from random and share interesting properties [1–3].

Three properties—small-world effect, scale-free degree distribution and hierarchical
modularity—constitute the basis of our understanding of network organization. A small-
world network is a network with a small average distance (or small diameter) and a large
clustering. The scale-free degree distribution refers to the high degree of heterogeneity
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in the connectivity patterns. Moreover, some networks exhibit a large-scale organization
characterized by a hierarchical modularity. Not surprisingly, some papers focus on how
these properties are related. For instance, the relation between large-scale organization (i.e.,
hierarchical modularity and scale-free) and local subgraph density has been studied in [4]. In
[5], the authors show that scale-free and small-world are not independent. A new perspective
was raised by Song, Havlin and Makse in [6], where the self-similarity of important topologies
is highlighted. Roughly speaking, the authors show that in some complex non-homogeneous
networks, a measure of fractality can be calculated by adapting the classical box-counting
method. The introduction of this new tool in the analysis of real networks allowed these
authors to show the scale invariance of many real networks such as the www, cellular
networks, protein-interaction networks, etc. However, the boxes considered in their method
are not directly associated with the possible modularity of the network, and self-similarity
appears when the network is ‘renormalized’ with the boxes converted into new nodes of a
smaller network during a coarsening process. Their study suggests that real networks have
evolved through an optimization process to a critical state with fractality being its telltale sign.
They also note that some standard models of scale-free networks, such as the Barabási–Albert
preferential attachment model [7], are not self-similar when considering this new measure. In
a recent paper [8], the same authors show that the emergence of a self-similar fractal network
is favoured by a diassortative process in its growing evolution for which high degree nodes
prefer connections to low degree nodes. Moreover, they also show that a fractal network
topology is inherent to the evolution of robust networks based on functional modules.

It is of interest to study these important properties of real networks with deterministic
exact methods. Deterministic models have the strong advantage that it is often possible to
compute analytically their characteristics, which may be compared with observational and
experimental data from real and simulated networks. With this motivation, we introduce here
a deterministic family of graphs, small-world Sierpinski graphs, which show simultaneously
fractality and the small-world effect.

A lot of research has been done on small-world networks since they were characterized
in [9], either unveiling the small-world structure of specific real networks or proposing
mathematical models for small-world networks. A survey on such networks and how to model
them can be found in [10]. Usual models are based on the existence of an underlying structure
with some extra links, added via a certain augmentation process. In [11] a construction of
deterministic small-world networks is given. From an algorithmic point of view, a small-world
graph can be seen as a graph in which very short paths between nodes can efficiently be found,
with no global knowledge [12–14].

On the other hand, the concepts of fractality and self-similarity are closely related to the
concept of dimension, which is not easily definable for graphs. A graph G = (V ,E) consists
of a non-empty set V of elements called vertices or nodes and a set E of pairs of elements of
V called edges. A mathematical definition of self-similar graph can be found in [15]. As far
as the authors know, there is no standard definition of fractality for graphs. Moreover, apart
from the research on fractality in network traffic and the recent papers from Song, Havlin and
Makse very few articles deal with fractality in networks. The work [16] by Goh et al is worth
mentioning, where the analysis of topological fractality in a graph is related to the study of a
specific spanning tree, the so-called skeleton.

In order to study a possible relation between the small-world effect and fractality, while
seeking a better understanding of fractal network topology, we focus on the family of Sierpinski
graphs. These graphs, derived from the Sierpinski triangle [17], have been considered from a
probabilistic point of view. In particular, the problem of random walks in Sierpinski graphs
has extensively been studied (see references in [15]). Here we adopt a combinatorial approach.
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Our results. We present the basic properties of three families of Sierpinski graphs:
Sierpinski gasket, SGn, Sierpinski carpet, SCn, and Sierpinski tetra, STn, where n ∈
N

+. We also deterministically construct three families of small-world Sierpinski graphs:
SWSGn,m, SWSCn,m, and SWSTn,m, for n � 3 and 2 � m � n − 1.

In both cases, Sierpinski graphs and small-world Sierpinski graphs, we compute the
diameter, the clustering1 and the box-counting dimension. For the computation of the box-
counting dimension we apply the box-counting method, which is explained in detail in [6].
Indeed, in all cases, the small-world Sierpinski graphs have the same box-counting dimension
as their corresponding ‘not small-world’ Sierpinski graphs.

Moreover, we show that small-world Sierpinski graphs are small-world, in the sense that
their diameter, D, is logarithmic in the order, N. More precisely, we show that

• if m � log2 n, then SWSGn,m satisfies D = O(log N);
• if m � log3 n, then SWSCn,m satisfies D = O(log N);
• if m � log2 n, then SWSTn,m satisfies D = O(log N).

Finally, we show that the construction of small-world Sierpinski graphs from Sierpinski
graphs does not imply a great change in the graph structure, that is, the number of added links
is small with regard to the number of links of the graphs and so is the clustering variation.
Specifically, a comparison between Sierpinski and small-world Sierpinski graphs gives that
the number of added edges is O

(
N

log N

)
and the clustering variation is O

(
1

log N

)
in the following

cases:

• SWSGn,m, with m = log3 n;
• SWSCn,m, with m = log3 n;
• SWSTn,m, with m = log4 n.

All of these graphs have diameter O(log N).
For the sake of completeness we include the family of Sierpinski carpet and small-world

Sierpinski carpet. This allows us to give a complete view of the Sierpinski family. However,
their clustering coefficient is 0, so they cannot strictly be called small-world in the usual sense.

2. Sierpinski graphs

In this section we present the basic properties of Sierpinski graphs. This family of graphs
comes from the Sierpinski gasket, the well-known fractal object introduced by Sierpinski in
1915 [17]. This graph family includes the Sierpinski gasket (see figure 2), the Sierpinski
carpet (see figure 4) and the Sierpinski tetra (see figure 6). All these graphs can be seen as
the underlying graph of its corresponding original fractal object. Our work focuses on their
properties as models for networks.

Sierpinski graphs are recursively constructed from a basic building block. In the case of
Sierpinski gasket, we start with a triangle, SG1. Let us denote by vT , vL and vR the nodes of
SG1. SG2 is derived from three copies of SG1, denoted by BT ,BL and BR , and identifying
the three pairs of nodes: vL

T ≡ vT
L, vR

T ≡ vT
R , and vL

R ≡ vR
L (T ,L and R stands for ‘top’, ‘left’

and ‘right’). In the natural planar representation of SG2, we can also distinguish three nodes,
the vertices of the external triangle, that can also be denoted by vT , vL and vR .

For every n � 2, the graph SGn is constructed from three copies of SGn−1 by identifying
three pairs of distinguished nodes, as we did for SG2. Again, SGn has a natural planar
representation and three distinguished nodes in the external face, which is represented as a

1 The node clustering is defined as 2e
d(d−1)

, where d is the degree of the node and e is the size of the subgraph induced
by its neighbours. The clustering of a graph is the average of the node clustering over all the nodes.
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Figure 1. The recursive constructions of SGn and SCn, with all the node identifications.

triangle. Similar recursive constructions give the Sierpienski carpet and the Sierpinski tetra.
In the case of Sierpinski carpet, the basic building block is a square. SCn is derived from eight
copies of SCn−1, which are assembled according to a 3 × 3 grid, with no central element.
Neighbouring blocks share a path. SCn has a natural planar representation in which the
external face is represented as a square, and the four vertices of this external square are the
four distinguished nodes of the graph. For the Sierpinski tetra, the basic building block is a
tetrahedron and, thus, we use a three-dimensional representation. STn is derived from four
copies of STn−1, in this case assembled according to the vertices of a bigger tetrahedron, in a
way analogous to the construction of SGn. The four distinguished nodes are the nodes in the
graph placed at the vertices of the tetrahedron in R

3 which the graph is inscribed in. Figure 1
shows a graphical representation of this construction for SGn and SCn. This construction will
allow us to prove the results in the following three sections.

2.1. Sierpinski gasket

Proposition 1. The Sierpinski gasket, SGn, satisfies the following properties (see figure 2):

(i) the order and the size of SGn are |Vn| = 3n+3
2 and |En| = 3n;

(ii) the diameter of SGn is Dn = 2n−1;
(iii) the clustering of SGn is Cn = 4·3n−2+5

3n+3 .

Proof. Let an and bn be |Vn| and |En|, respectively. By construction of SGn, for every
n � 2, an = 3an−1 − 3 and bn = 3bn−1. Moreover, a1 = 3, and b1 = 3. By solving the
recurrence equations we obtain an = 3n+3

2 and bn = 3n.
It can easily be seen that Dn = 2Dn−1. Since D1 = 1, we have Dn = 2n−1.
The vertices of the external triangle are the only nodes of degree 2. Those three nodes

have clustering 1. For n � 2, all the remaining nodes have degree 4, and the clustering is
either 1

2 or 1
3 . Let xn be the number of nodes in SGn with clustering 1

2 , and yn be the number
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Figure 2. SG1, SG2, SG3 and SG4.

Figure 3. Boxes in SG5 with �B = 3 (distance = 2) and �B = 5 (distance = 4).

of nodes in SGn with clustering 1
3 . The recursive construction of SGn allows us to derive the

following recurrence equations:

xn = 3xn−1, x2 = 3
yn = 3yn−1 + 3, y2 = 0.

The solution of this system is xn = 3n−1 and yn = 3n−1−3
2 . This gives us the value for the

clustering

Cn = 3 + 1
3 · 3n−1−3

2 + 1
2 · 3n−1

3n+3
2

= 4 · 3n−2 + 5

3n + 3
.

�

Proposition 2. The box-counting dimension of SGn is dB = ln 3
ln 2 ≈ 1.585.

Proof. According to the box-counting method, the box-counting dimension dB is given by
NB ≈ �B

−dB , where NB is the number of boxes of linear size �B needed to cover the graph.
The linear size of a box is one plus its diameter.

For different values of �B , we cover SGn with boxes of linear size �B and we count the
number of boxes (see figure 3). The found values are shown in the following table.

lB 2 3 5 · · · 2n−1 + 1

NB 3n−1 3n−2 3n−3 · · · 1

The value obtained for the box-counting dimension is dB = ln 3
ln 2 ≈ 1.585. �
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Figure 4. SC1, SC2, SC3 and SC4.

2.2. Sierpinski carpet

Proposition 3. The Sierpinski carpet, SCn, satisfies the following properties (see figure 4):

(i) the order and the size of SCn are |Vn| = 11
70 · 8n + 8

5 · 3n−1 + 8
7 and |En| = 3

10 · 8n +
8
5 · 3n−1;

(ii) the diameter of SCn is Dn = 2 · 3n−1;

(iii) all the nodes in SCn have clustering 0.

Proof. Let an and bn be |Vn| and |En| respectively, and let �n be the side length of the external
square in SCn. By construction of SCn, the following recurrence equations hold:

�n = 3�n−1 − 2, �1 = 2
an = 8(an−1 − �n−1 − 1), a1 = 4
bn = 8(bn−1 − �n−1), b1 = 4.

By solving this system we obtain �n = 3n−1, an = 11
70 · 8n + 8

5 · 3n−1 + 8
7 , and bn = 3

10 · 8n +
8
5 · 3n−1.

It can easily be seen that Dn doubles the length of the side of the external square, i.e.,
Dn = 2�n = 2 · 3n−1.

Since SCn has no triangles, the clustering is 0. �

Proposition 4. The box-counting dimension of SCn is dB = ln 8
ln 3 ≈ 1.8928.

Proof. The proof is analogous to the proof of proposition 2. For different values of �B , we
cover SCn with boxes of linear size �B and we count the number of boxes (see figure 5). The
values obtained are shown in the following table.

lB 3 7 19 · · · 2 · 3n−1 + 1

NB 8n−1 8n−2 8n−3 · · · 1

The value obtained for the box-counting dimension is dB ≈ 1.8928. �



Fractality and the small-world effect in Sierpinski graphs 11745

Figure 5. Boxes in SC4 with �B = 7 (distance = 6) and �B = 19 (distance = 18).

Figure 6. ST1, ST2, ST3 and ST4.

2.3. Sierpinski tetra

Proposition 5. The Sierpinski tetra, STn, satisfies the following properties (see figure 6):

(i) the order and the size of STn are |Vn| = 2(4n−1 + 1) and |En| = 6 · 4n−1.
(ii) the diameter of STn is Dn = 2n−1.

(iii) the clustering of STn is Cn = 5·4n−1+16
10(4n−1+1)

.

Proof. Let an and bn be |Vn| and |En|, respectively. By construction of STn, for every
n � 2, an = 4an−1 − 6 and bn = 4bn−1. Moreover, a1 = 4, and b1 = 6. By solving the
recurrence equations we obtain an = 2(4n−1 + 1) and bn = 6 · 4n−1.

As we have shown for the Sierpinski gasket, Dn = 2Dn−1. Since D1 = 1, we have
Dn = 2n−1.

The only nodes of degree 3 are the four vertices of the external tetrahedron. These four
nodes have clustering 1. For n � 2, the clustering is either 8

15 or 6
15 . Let xn be the number

of nodes in STn with clustering 8
15 , and yn be the number of nodes in STn with clustering 6

15 .
The recursive construction of STn allows us to derive the following recurrence relations:

xn = 4xn−1, x2 = 6
yn = 4yn−1 + 6, y2 = 0.

The solution of this system is xn = 6 · 4n−2 and yn = 2(4n−2 − 1). This implies that the
clustering is

Cn = 4 + 6
15 · 2(4n−2 − 1) + 8

15 · 6 · 4n−2

2(4n−1 + 1)
= 5 · 4n−1 + 16

10(4n−1 + 1)
.

�
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Figure 7. Boxes in ST3 with �B = 3 (distance= 2).

Proposition 6. The box-counting dimension of STn is dB = 2.

Proof. The proof is analogous to the proofs of propositions 2 and 4. For different values
of �B , we cover STn with boxes of linear size �B and we count the number of boxes (see
figure 7). The values obtained are shown in the following table.

lB 2 3 5 · · · 2n−1 + 1

NB 4n−1 4n−2 4n−3 · · · 1

The value obtained for the box-counting dimension is dB ≈ 2. �

3. Small-world Sierpinski graphs

This section is devoted to the construction of small-world Sierpinski graphs.
Our goal is to reduce the diameter enough so as to attain a logarithmic diameter, while

maintaining the original graph structure. For the three previous families of Sierpinski graphs,
we propose similar constructions based on the adding of a node linked to a certain set of
original nodes.

As we will show in section 4, both the number of added edges and the clustering variation
are reasonably small.

3.1. Small-world Sierpinski gasket

The small-world Sierpinski gasket, SWSGn,m, is the graph defined as follows.
For every n � 3 and m = 2, . . . , n − 1, SGn can be seen as 3n−m copies of SGm, with

some node identifications. SWSGn,m is the graph obtained by joining a new node to every
vertex of the external triangle of every copy of SGm (see figure 8). The number of new edges
is exactly the number of vertices of SGn−m+1.

The diameter of this new graph depends on the value of m. We will show that, for some
of the values of m,D(SWSGn,m) = O(log |V (SWSGn,m)|). Thus, this construction gives us
a graph which is a small-world fractal.

Next we give the properties of SWSG.
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Figure 8. SWSG4,2.

Proposition 7. The small-world Sierpinski gasket, SWSGn,m, satisfies the following
properties (see figure 8):

(i) the order and the size of SWSGn,m are |Vn,m| = 3n+5
2 and |En,m| = 3n + 3n−m+1+3

2 ;
(ii) the diameter of SWSGn,m is Dn,m = 2m−1 + 2;

(iii) the clustering of SWSGn,m is Cn,m = 20·3n−2−2·3n−m+7
5(3n+5)

.

Proof. The order of SWSGn,m is one plus the order of SGn. The size of SWSGn,m is the
size of SGn, plus the number of added edges. Since the number of added edges is the order of
SGn−m+1, by proposition 1 we have |Vn,m| = 3n+3

2 + 1 = 3n+5
2 and |En,m| = 3n + 3n−m+1+3

2 .
Let us denote by D(SGk) the diameter of SGk and by Dn,m the diameter of SWSGn,m.

To compute Dn,m we need only observe that, in SGm, every node is at distance at most
D(SGm)/2 from the set of vertices of the external triangle. An upper bound for Dn,m is
D(SGm) + 2 = 2m−1 + 2. It can easily be seen that this is also a lower bound. Therefore,
Dn,m = 2m−1 + 2.

The new node has clustering 0. The vertices of the external triangle are the only nodes
of degree 3. These three nodes have clustering 1

3 . The remaining nodes have degree 4 or 5.
For the nodes of degree 4, the clustering is either 1

2 or 1
3 . Let xn be the number of nodes of

degree 4 with clustering 1
2 , and yn be the number of nodes of degree 4 with clustering 1

3 . By
construction of SWSGn,m and by proposition 1 we have

xn = 3n−1

and

yn = 3n−1 − 3

2
− 3n−m+1 − 3

2
= 3n−1 − 3n−m+1

2
.

The remaining 3n−m+1−3
2 nodes have degree 5 and clustering 1

5 .
This gives us the value for the clustering

Cn =
1
3 · 3 + 1

2 · 3n−1 + 1
3 · 3n−1−3n−m+1

2 + 1
5 · 3n−m+1−3

2
3n+5

2

= 20 · 3n−2 − 2 · 3n−m + 7

5(3n + 5)
.
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Figure 9. SWSC4,3.

�

Corollary 8. Let us denote by N and D the order and the diameter of SWSGn,m, respectively.
If m � log2 n, then D = O(log N).

Proof. By proposition 7, D = 2m−1 + 2 and N = 3n+5
2 . If m � log2 n, then

D � n
2 + 2 = O(log N). �

Proposition 9. The box-counting dimension of SWSGn,m is the same as the box-counting
dimension of SGn, namely, dB = ln 3

ln 2 ≈ 1.585.

Proof. We can cover SWSGn,m with boxes of linear size �B in the same way as we cover SGn

(see proposition 2 and figure 3). We need only to add the new node to one of the boxes. We
obtain exactly the same number of boxes for every size �B . So, the box-counting dimension
of SWSGn,m and SGn is the same. �

3.2. Small-world Sierpinski carpet

The small-world Sierpinski carpet, SWSCn,m, is the graph defined as follows.
For every n � 3 and m = 2, . . . , n − 1, SCn can be seen as 8n−m copies of SGm, with

some path identifications. SWSCn,m is the graph obtained by joining a new node to every
vertex of the external square of every copy of SCm (see figure 9). The number of new edges
is exactly the number of vertices of SCn−m+1.

The diameter of this new graph depends on the value of m. We will show that, for some of
the values of m,D(SWSCn,m) ≈ ln |V (SWSCn,m)|. Thus, this construction leads to a graph
which is a small-world fractal.

This definition is analogous to the definition of SWSGn,m (see section 3.1).
Next we give the properties of SWSC.

Proposition 10. The small-world Sierpinski carpet, SWSCn,m, satisfies the following
properties:

(i) the order and the size of SWSCn,m are |Vn,m| = 11
70 · 8n + 8

5 · 3n−1 + 15
7 and |En,m| =

3
10 · 8n + 8

5 · 3n−1 + 11
70 · 8n−m+1 + 8

5 · 3n−m + 8
7 ;
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Figure 10. SWST3,2.

(ii) the diameter of SWSCn,m is Dn,m = 5 · 3m−2 + 1;
(iii) all the nodes in SWSCn,m have clustering 0.

Proof. The order of SWSCn,m is the order of SCn, plus one. The size of SWSCn,m is the
size of SCn, plus the number of added edges. Since the number of added edges is the order of
SCn−m+1, by proposition 3 we have |Vn,m| = 11

70 · 8n + 8
5 · 3n−1 + 8

7 + 1 = 11
70 · 8n + 8

5 · 3n−1 + 15
7

and |En,m| = 3
10 · 8n + 8

5 · 3n−1 + 11
70 · 8n−m+1 + 8

5 · 3n−m + 8
7 .

Let us denote by �k = 3k−1 the length of the side of the external square of SCk (see the
proof of proposition 3) and by Dn,m the diameter of SWSCn,m. To compute Dn,m we need
only observe that, in SCm, every node is at distance at most 2�m−1 + �m−1−1

2 = 5�m−1−1
2 from the

set of vertices of the external square. An upper bound of Dn,m is 5�m−1 −1 + 2 = 5�m−1 + 1 =
5 ·3m−2 +1. It can easily be seen that this is also a lower bound. Therefore, Dn,m = 5 ·3m−2 +1.

Since SWSCn,m has no triangles, the clustering is 0. �

Corollary 11. Let us denote by N and D the order and the diameter of SWSCn,m, respectively.
If m � log3 n, then D = O(log N).

Proof. By proposition 10, D = 5 · 3m−2 + 1. If m � log3 n, then D � 5
9n + 1 = O(log N).

�

Proposition 12. The box-counting dimension of SWSCn,m is the same as the box-counting
dimension of SC, namely, dB = ln 8

ln 3 ≈ 1.892.

Proof. The proof is analogous to the proof of proposition 9, and uses the box counting shown
in figure 5. �

3.3. Small-world Sierpinski tetra

The small-world Sierpinski tetra, SWSTn,m, is the graph defined as follows.
For every n � 3 and m = 2, . . . , n − 1, STn can be seen as 4n−m copies of STm, with

some node identifications. SWSTn,m is the graph obtained by joining a new node to every
vertex of the external tetrahedron of every copy of STm (see figure 10). The number of new
edges is exactly the number of vertices of STn−m+1.



11750 L Barrière et al

The diameter of this new graph depends on the value of m. We will show that, for some
of the values of m,D(SWSTn,m) ≈ ln |V (SWSTn,m)|. Thus, this construction gives a graph
which is a small-world fractal.

This definition is analogous to the definition of SWSGn,m (see section 3.1) and SWSCn,m

(see section 3.2).
Next we give the properties of SWST .

Proposition 13. The small-world Sierpinski tetra, SWSTn,m, satisfies the following properties:

(i) the order and the size of SWSTn,m are |Vn,m| = 2 · 4n−1 + 3 and |En,m| = 6 · 4n−1 + 2 ·
4n−m + 2;

(ii) the diameter of SWSTn,m is Dn,m = 2m−1 + 2;
(iii) the clustering of SWSTn,m is Cn,m = 35·4n−1−8·4n−m−50

35(2·4n−1+3)
.

Proof. The order of SWSTn,m is one plus the order of STn. The size of SWSTn,m is the
size of STn, plus the number of added edges. Since the number of added edges is the
order of STn−m+1, by proposition 5 we have |Vn,m| = 2(4n−1 + 1) + 1 = 2 · 4n−1 + 3 and
|En,m| = 6 · 4n−1 + 2 · 4n−m + 2.

Let us denote by D(STk) the diameter of STk and by Dn,m the diameter of SWSTn,m.
To compute Dn,m we need only observe that, in STm, every node is at distance at most
D(STm)/2 from the set of vertices of the external tetrahedron. An upper bound of Dn,m is
D(STm) + 2 = 2m−1 + 2. It can easily be seen that this is also a lower bound. Therefore,
Dn,m = 2m−1 + 2.

The new node has clustering 0. The vertices of the external tetrahedron are the only nodes
of degree 4. Those four nodes have clustering 1

2 . The remaining nodes have degree 6 or 7.
For the nodes of degree 6, the clustering is either 8

15 or 6
15 . Let xn be the number of nodes of

degree 6 with clustering 8
15 , and yn be the number of nodes of degree 6 with clustering 6

15 . By
construction of SWSTn,m and by proposition 5 we have

xn = 6 · 4n−2

and

yn = 2(4n−2 − 1) − 2(4n−m − 1) = 2(4n−2 − 4n−m).

The remaining 2(4n−m − 1) nodes have degree 7 and clustering 6
21 .

This gives us the value for the clustering

Cn =
1
2 · 4 + 8

15 · 6 · 4n−2 + 6
15 · 2(4n−2 − 4n−m) + 6

21 · 2(4n−m − 1)

2 · 4n−1 + 3

= 35 · 4n−1 − 8 · 4n−m − 50

35(2 · 4n−1 + 3)
.

�

Corollary 14. Let us denote by N and D the order and the diameter of SWSTn,m, respectively.
If m � log2 n, then D = O(log N).

Proof. By proposition 13, D = 2m−1 + 2 and N = 2 · 4n−1 + 3. If m � log2 n, then
D � n

2 + 2 = O(log N). �

Proposition 15. The box-counting dimension of SWSTn,m is the same as the box-counting
dimension of STn, namely dB = 2.

Proof. The proof is analogous to the proof of proposition 9, and uses the box counting shown
in figure 7. �
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4. Sierpinski versus small-world Sierpinski

In the previous section, we proposed a construction of small-world graphs for three families
of graphs—the Sierpinski gasket, the Sierpinski carpet and the Sierpinski tetra. We have
shown that all of these three families of graphs are fractal and have logarithmic diameter. To
summarize, we have the following three cases:

• The small-world Sierpinski gasket, SWSGn,m, is obtained from the Sierpinski gasket,
SGn, by adding 3n−m+1+3

2 edges. Its box-counting dimension is ln 3
ln 2 ≈ 1.585 and its

diameter is O(log N), for 2 � m � log2 n.
• The small-world Sierpinski carpet, SWSCn,m, is obtained from the Sierpinski carpet, SCn,

by adding 11
70 · 8n−m+1 + 8

5 · 3n−m + 8
7 edges. Its box-counting dimension is ln 8

ln 3 ≈ 1.892
and its diameter is O(log N), for 2 � m � log3 n.

• The small-world Sierpinski tetra, SWSTn,m, is obtained from the Sierpinski tetra, STn, by
adding 2 · 4n−m + 2 edges. Its box-counting dimension is 2 and its diameter is O(log N),
for 2 � m � log2 n.

As a measure of how the underlying structure is preserved in the construction of a small-
world Sierpinski graph, we can evaluate the number of added edges and the clustering variation.
In this sense, our construction will be better for large values of m, those values leading to
diameter O(log N).

Next we show that both the number of added edges and the clustering variation are
reasonably small. More precisely, for each of these three families, the optimal values of m
have the property that the number of added edges and the clustering variation, with respect to
the corresponding Sierpinski graph, are O

(
N

log N

)
and O

(
1

log N

)
, respectively, where N denotes

the order of the graph. For the sake of simplicity, we restrict our calculations to specific values
of m.

Corollary 16. If m = log3 n, then the size variation and the clustering variation between SGn

and SWSGn,m are O
(

N
log N

)
and O

(
1

log N

)
, respectively, where N denotes the order of SGn.

Proof. By proposition 1, the order of SGn is N = 3n+3
2 . Moreover, its size is E = 3n and its

clustering is C = 4·3n−2+5
3n+3 . By proposition 7, the size of SWSGn,m is E′ = 3n + 3n−m+1+3

2 and

its clustering is C ′ = 20·3n−2−2·3n−m+7
5(3n+5)

.
Easy calculations give

E′ − E = 3n−m+1 + 3

2

and

C − C ′ = 4 · 3n−2 + 5

3n + 3
− 20 · 3n−2 − 2 · 3n−m + 7

5(3n + 5)

= 8 · 3n−2 + 25

(3n + 3)(3n + 5)
+

2 · 3n−m

5(3n + 5)
− 7

5(3n + 5)
.

If m = log3 n, then 3n−m = 3n

n
, which implies that the number of added edges is

E′ − E = O
(

N
log N

)
, and the decreasing of the clustering is C − C ′ = O

(
1

log N

)
. �

Corollary 17. If m = log3 n, then the size variation between SCn and SWSCn,m is O
(

N
log N

)
,

where N denotes the order of SCn.
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Proof. By proposition 3, the order of SCn is N = 11
70 · 8n + 8

5 · 3n−1 + 8
7 and its

size is E = 3
10 · 8n + 8

5 · 3n−1. By proposition 10, the size of SWSGn,m is E′ =
3

10 · 8n + 8
5 · 3n−1 + 11

70 · 8n−m+1 + 8
5 · 3n−m + 8

7 .
Easy calculations give

E′ − E = 11
70 · 8n−m+1 + 8

5 · 3n−m + 8
7 .

If m = log3 n, then 3n−m = 3n

n
and 8n−m < 8n

n
, which implies that the number of added

edges is E′ − E = O
(

N
log N

)
. �

Remark. In this case, the discussion about the clustering coefficient is not needed, because
its value is 0 for both graphs SCn and SWSCn,m.

Corollary 18. If m = log4 n, then the size variation and the clustering variation between STn

and SWSTn,m are O
(

N
log N

)
and O

(
1

log N

)
, respectively, where N denotes the order of STn.

Proof. By proposition 5, the order of STn is N = 2(4n−1 + 1). Moreover, its size is
E = 6 · 4n−1 and its clustering is C = 5·4n−1+16

10(4n−1+1)
. By proposition 13, the size of SWSGn,m is

E′ = 6 · 4n−1 + 2 · 4n−m + 2 and its clustering is C ′ = 35·4n−1−8·4n−m−50
35(2·4n−1+3)

.
Easy calculations give

E′ − E = 2 · 4n−m + 2

and

C − C ′ = 5 · 4n−1 + 16

10(4n−1 + 1)
− 35 · 4n−1 − 8 · 4n−m − 50

35(2 · 4n−1 + 3)

= 37 · 4n−1 + 48

10(4n−1 + 1)(2 · 4n−1 + 3)
+

8 · 4n−m

35(2 · 4n−1 + 3)
+

10

7(2 · 4n−1 + 3)
.

If m = log4 n, then 4n−m = 4n

n
, which implies that the number of added edges is

E′ − E = O
(

N
log N

)
, and the decreasing of the clustering is C − C ′ = O

(
1

log N

)
. �

5. Conclusions

We have presented the properties of Sierpinski graphs, including their clustering and fractality.
We have also proposed a deterministic construction of small-world Sierpinski graphs, and
studied their properties. We have applied combinatorial techniques to show that the structure
of the Sierpinski graphs is preserved, including fractality, while the small-world phenomenon
arises.

In our small-world constructions, the added node clearly acts as a hub. For communication
purposes, it would have to be improved. However, our goal was to show that the box-counting
method, which is used to compute the classical box-counting dimension and has been adapted
for graphs in [6], works even in a small-world network. In this sense, we can say that we
have found a family of fractal, small-world deterministic networks, albeit that the definition
of fractality in networks may not yet be standard.
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